
Software Engineering

and Architecture

Multi Dimensional Variance

Ultra flexible software

Goal and means to an end?

• Patterns:

• Goal in itself or just the means to an end?

• Patterns are interesting as means to achieve some

specific quality in our software:

– elements of Reusable ...

• A key aspect is handling variance

CS@AU Henrik Bærbak Christensen 2

Variance

• Factoring out in roles and delegating to objects that play

roles is a very strong technique to handle multiple

dimensions of variance!

– that is – a piece of software that must handle different types of

context

• work on both MariaDB and MongoDB database

• work in both testing and production environment

• work both with real hardware attached or simulated environment

• work with variations for four different customers

• Here all types of combinations are viable !

CS@AU Henrik Bærbak Christensen 3

New Requirements

• Alphatown county wants the display to show parking end

time instead of minutes bought!

– I.e “Parking ends at 15:47”

CS@AU Henrik Bærbak Christensen 4

Combinatorial explosion!

• All these requirements pose a combinatorial explosion of

variants

There are 3*2*2 = 12

combinations. This may be

doubled if we include

overriding weekend day

algorithm !

CS@AU Henrik Bærbak Christensen 5

Restating the Options

Parametric Variance

• Variant handling by if (param) or #ifdef’s is well known,
but the code simply bloats with conditional statements.

• Example: GNU C compiler has a single statement that
includes 41 macro expansions !!!

• I wonder what that code does???

• #ifdef (MSDOS && ORACLE || MYSQL && …)

• #ifdef (DEBUG)
– quickly you loose control of what is going on…

CS@AU Henrik Bærbak Christensen 7

Polymorphic Variance

• Inheritance dies miserably facing this challenge!

• Just look at names!

• Making new variants is

difficult.

• And code reuse is very

difficult

CS@AU Henrik Bærbak Christensen 8

Masking the problem

• By combining parametric and polymorphic variance you

may mask the problem somewhat.

• I.e. handle receipt type by inheritance, and the rest by

pumping the code with if’s…

• but … it is still an inferior way to handle multi-dimensional

variance…

CS@AU Henrik Bærbak Christensen 9

Compositional software

• The way forward is:

• Compositional software

• Highly configurable and flexible software!

• Consider what behavior that may vary

• Express variable behavior as a responsibility clearly

defined by an interface

• Delegate to object serving the responsibility to perform

behavior

CS@AU Henrik Bærbak Christensen 10

• Encapsulate what varies

– The display output must exist in variants

• Program to an interface

– <<interface>> DisplayStrategy

• public int calculateOutput(int minutes);

• Favor object composition

CS@AU Henrik Bærbak Christensen 11

Compositional software

• [Demo]

CS@AU Henrik Bærbak Christensen 12

Compositional Software

• [Backgammon Demo]

CS@AU Henrik Bærbak Christensen 13

Compositional Software

• The paystation has become a team leader, delegating
jobs to specialist workers:

• Note! No if’s – no bloat – easy to read code leading to
fewer bugs!

CS@AU Henrik Bærbak Christensen 14

Compositional Software

• Telling the team leader which persons will serve the

roles:

• The factory interface

CS@AU Henrik Bærbak Christensen 15

Compositional Software

• Creating a pay station:

– create the factory

– create the pay station, giving it access to the factory

CS@AU Henrik Bærbak Christensen 16

Compositional Software

• ... and a factory:

CS@AU Henrik Bærbak Christensen 17

Analysis

• Benefits

– The variability points are independent

• we introduced new display strategy – but this did not alter any of the

existing strategies !

– Once the variability point has been introduced we can introduce

as many new types of variations as we like – only by adding new

classes

• any price model; new receipt types; new display output...

– Open-closed principle in action...

public int readDisplay() {

 return displayStrategy.calculateOutput(timeBought);

 }

CS@AU Henrik Bærbak Christensen 18

Open/Closed principle

Open for extension

Closed for modification

CS@AU Henrik Bærbak Christensen 19

Open/Closed principle

• Open for extension

– I can make my own feature additions/changes

by extending the software

• Closed for modification

– But I do not rewrite any existing code

• Or ask Oracle, Google, NetFlix, Apache, to

rewrite code to handle my extensions

• (i.e. no soldering of wires in my TV set)

CS@AU Henrik Bærbak Christensen 20

Analysis

• Benefits

– Any combination you want, we are able to “mix”

– Nonsense combinations can be delimited

• abstract factory is the place to “mix” the cocktails

– Code readability

• every aspect of the configuration is clearly defined in a single place

– configuration mixing in the abstract factory

– orchestration in the PayStation impl

– each variation type in its own implementing class

CS@AU Henrik Bærbak Christensen 21

Analysis

• Liabilities

– Each dimension of variability (price model, receipt type, display

output, etc) is really independent – so

– we cannot feed information from one to the other directly

– If they require information from each other

• Then of course we must provide the means to do so

– Mediator pattern, memento pattern, observer pattern, others

• Like we do in mandatory project

– StandardGame calls strategy with ‘this’ ala a Role interface

– StandardGame calls mutators on strategy

CS@AU Henrik Bærbak Christensen 22

Analysis

• Liabilities

• The number of classes in action

• On the other hand:

– careful naming makes it

possible to quickly identify

which class to change…

• And use packages to

group cohesive modules

CS@AU Henrik Bærbak Christensen 23

Analysis

• Liabilities

– Actually I have a combinatorial explosion of factories! I need a

factory for each and every combination of delegates that I have

– Exercise: How can I avoid this explosion?

CS@AU Henrik Bærbak Christensen 24

Another Example

SkyCave

CS@AU Henrik Bærbak Christensen 25

Configuration System

• Six roles of variability

– Storage system

– Network connector

– Authentication

– External services

– Name Service

– Logging System

• AbsFactory reads a

CPF property file

– Impl class

– Network host and port

CS@AU Henrik Bærbak Christensen 26

Configuration System

• Six roles of variability

– Storage system (5)

• FakeObject, MongoDB, Redis, Memcached, MariaDB

– Network connector (3)

• Sockets, HTTP, RabbitMQ

– Authentication (3)

• TestStub, NullObject, RealService

– External services (2)

• TestStub, RealService

– Name Service (2)

• In memory, Memcached

– Logging System (2)

• In memory, Memcached

CS@AU Henrik Bærbak Christensen 27

SkyCave can exist in 5*3*3*2*2*2

= 360 variants

And No Code Clutter

• An object manager keeps track of all delegates ☺
CS@AU Henrik Bærbak Christensen 28

Summary

Handle multi-dimensional

variance by compositional

software designs !

CS@AU Henrik Bærbak Christensen 29

	Slide 1: Software Engineering and Architecture
	Slide 2: Goal and means to an end?
	Slide 3: Variance
	Slide 4: New Requirements
	Slide 5: Combinatorial explosion!
	Slide 6: Restating the Options
	Slide 7: Parametric Variance
	Slide 8: Polymorphic Variance
	Slide 9: Masking the problem
	Slide 10: Compositional software
	Slide 11:
	Slide 12: Compositional software
	Slide 13: Compositional Software
	Slide 14: Compositional Software
	Slide 15: Compositional Software
	Slide 16: Compositional Software
	Slide 17: Compositional Software
	Slide 18: Analysis
	Slide 19: Open/Closed principle
	Slide 20: Open/Closed principle
	Slide 21: Analysis
	Slide 22: Analysis
	Slide 23: Analysis
	Slide 24: Analysis
	Slide 25: Another Example
	Slide 26: Configuration System
	Slide 27: Configuration System
	Slide 28: And No Code Clutter
	Slide 29: Summary

